Non-Periodic Ising Quantum Chains and Conformal Invariance
نویسندگان
چکیده
In a recent paper, Luck [1] investigated the critical behaviour of one-dimensional Ising quantum chains with couplings constants modulated according to general non-periodic sequences. In this short note, we take a closer look at the case where the sequences are obtained from (two-letter) substitution rules and at the consequences of Luck’s results at criticality. They imply that only for a certain class of substitution rules the long-distance behaviour is still described by the c=1/2 conformal field theory of a free Majorana fermion as for the periodic Ising quantum chain, whereas the general case does not lead to a conformally invariant scaling limit.
منابع مشابه
The modified XXZ Heisenberg chain: conformal invariance, of a duality-twisted Ising quantum chain 7 surface exponents of c < 1 systems, and hidden symmetries of finite chains Int
The modified XXZ Heisenberg chain, conformal invariance, surface exponents of c < 1 systems, and hidden symmetries of the finite chains * Abstract: The spin-1/2 XXZ Heisenberg chain with two types of boundary terms is considered. For the first type, the Hamiltonian is hermitian but not for the second type which includes the U q [SU (2)] symmetric case. It is shown that for a certain " tuning " ...
متن کاملLog-periodic corrections to scaling: exact results for aperiodic Ising quantum chains
Log-periodic amplitudes of the surface magnetization are calculated analytically for two Ising quantum chains with aperiodic modulations of the couplings. The oscillating behaviour is linked to the discrete scale invariance of the perturbations. For the Fredholm sequence, the aperiodic modulation is marginal and the amplitudes are obtained as functions of the deviation from the critical point. ...
متن کاملDensity Profiles in Random Quantum Spin Chains
We consider random transverse-field Ising spin chains and study the magnetization and the energydensity profiles by numerically exact calculations in rather large finite systems (L # 128). Using different boundary conditions (free, fixed, and mixed) the numerical data collapse to scaling functions, which are very accurately described by simple analytic expressions. The average magnetization pro...
متن کاملConformal Invariance in Periodic Quantum Chains
We show how conformal invariance predicts the functional form of two-point correlators in one-dimensional periodic quantum systems. Numerical evidence for this functional form in a wide class of models — including long-ranged ones — is given and it is shown how this may be used to significantly speed up calculations of critical exponents. 05.70.Jk, 11.30.-j, 64.60.Fr Typeset using REVTEX
متن کاملSpectrum of a duality-twisted Ising quantum chain
The Ising quantum chain with a peculiar twisted boundary condition is considered. This boundary condition, first introduced in the framework of the spin1/2 XXZ Heisenberg quantum chain, is related to the duality transformation, which becomes a symmetry of the model at the critical point. Thus, at the critical point, the Ising quantum chain with the duality-twisted boundary is translationally in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008